
Sameera Jayasoma
18th July, 2009

Senior Software Engineer

Introduction to OSGi
The Dynamic Module System The Dynamic Module System 

for Javafor Java



WSO2
The open source SOA companyThe open source SOA company

 Founded in 2005 by pioneers in XML and Web services technologies & 
standards as well as open source.

 Founders & leading contributors to all key Apache Web services projects.
 Offering complete SOA platform, 100% free and open source.
 Business model based on providing training, consultancy and support for 

the software.
 Global corporation with R&D center in Sri Lanka and offices in US & UK.



WSO2 Carbon
Middleware á la CarteMiddleware á la Carte

 Industry's only fully componetized SOA platform based on OSGi.
 A well defined component model for Enterprise SOA middleware
 The base platform for all WSO2' Java products

 Web Services Application Server(WSAS)
 Enterprise Service Bus(ESB)
 Identity Server(IS)
 Governance Registry(GReg)

 Offers unprecedented flexibility for developers to create customized SOA 
products with P2 based provisioning supporte

 Adapt middleware to your enterprise architecture, rather than adapt your 
enterprise architecture to middleware



WSO2 SOA Platform





Modular Systems..



Modular Systems

 No doubt, a computer is complex system.
 How do yo handle this complexity, when designing large systems?



Modular Systems

 Break the large system into more smaller, 
understandable units

 These small units are called modules.
 Benefits of modular systems

 Reuse
 Abstraction
 Devision of labour
 Ease of repair



 I've been made up of many smaller parts. I need all 
of them to work properly. We work as a single unit. 
(self contained)

 You can store important information inside me and 
you can retrieve them later. Thats what I do. I am 
not doing unrelated things.(highly cohesive)

 Talk to me using our language (common interface 
shared between  other hard disks).

 I don't care about how other modules perform their 
work internally. I talk to their interface( loose 
coupling) 

Modular Systems
I am a hard diskI am a hard disk



Modular Systems
In the software worldIn the software world

 Same theories can be applied to the software world also.
 Dividing a complex software system into small parts/modules.

•Allows us to understand the system easily.
•Allows us to develop part by part by different team.
•Allows us to reuse already developed modules.

 Does Java supports building true modular systems?



Java for building modular systems..



Java for Modular Systems

 Java is one of the popular OOP languages for 
developing large enterprise applications.

 Java provides some level of modularity.
 Consider a Java class

•The unit of information hiding in Java.
•Public methods, expose a defined contract

 Yet Java alone fails to develop better modular 
systems. Why?



 What we need is something like this.
 A package should be the information hiding unit.
 It should be possible to,

•Share a subset of packages from a Jar
•Hide a subset of packages from a Jar

java ­classpath a.jar:b.jar:target/classes 
org.sample.HelloWorld

Java for Modular Systems



Class Loading
In standard Java applicationIn standard Java application



Problem with JARs

 JAR is unit of deployment in Java.
 Typical Java application consists a set of JAR files.
 No runtime representation for a JAR.
 At runtime contents of all JAR files are treated as a single, ordered and global list 

which is called the class path
 Consider the following command.

java ­classpath log4j.jar:statx­api.jar:woodstox.jar:axis2.jar:

carbon.jar:utils.jar:target/classes org.sample.HelloWorld



org/sample/HelloWorld
....

org/wso2/carbon/utils/CarbonUtils
....

org/wso2/carbon/core/Activator
....

org/apache/axis2/AxisFault
....

com/ctc/wstx/api/ReaderConfig
....

javax/xml/stream/XMLStreamReader
....

Problem with JARs
org/apache/log4j/Appender
....

Search order

log4j.jar

stax­api.jar

woodstox.jar

axis2.jar

carbon­core.jar

carbon­utils.jar

target/classes



org/sample/HelloWorld
....

org/apache/log4j/Appender
.... log4j­2.0.jar

Problem with JARs
Problematic scenarioProblematic scenario

org/wso2/carbon/utils/CarbonUtils
....

org/wso2/carbon/core/Activator
....

org/apache/axis2/AxisFault
....

com/ctc/wstx/api/ReaderConfig
....

javax/xml/stream/XMLStreamReader
....

org/apache/log4j/Appender
.... log4j­1.0.jar

stax­api.jar

woodstox.jar

axis2.jar

carbon­core.jar

carbon­utils.jar

target/classes

 HelloWorld class has a dependency 
on log4j version 2.0.

 What version of the Appender class 
is loaded?

Depends on log4j 
2.0 version



Problem with JARs

 Multiple versions of JAR files cannot be loaded simultaneosly
 A JAR cannot declare dependencies on other JARs.
 No mechanism for information hiding
 Hence, JARs cannot be considered as modules



Java for Modular Systems

 Can you update a part(can be a JAR file) of a running Java application?
 Can you add new functionality to a new Java application at runtime?
 The answer is NO.
 If you need to add new functionality or update existing functionality, JVM needed 

to be restarted. 
 Java lacks dynamism



Java alone cannot be used to build true 
Modular Systems..



But Java has given a great flexibility which has 
allowed to build a 

powerful module system on top of it. 
That is..



OSGi
The Dynamic Module System for JavaThe Dynamic Module System for Java



OSGi
The Dynamic Module System for JavaThe Dynamic Module System for Java

 Defines a way to create true modules and a way for those modules to interact at 
runtime

 Modules(Bundles) in OSGi can be installed, updated and uninstalled without 
restarting the JVM.



Bundle

 The unit of modularization in OSGi.
 Standard Java application is a collection of Jars. In the same way OSGi based 

application can be considered as a collection of Bundle.
 A Java package is the unit of Information hiding.
 Bundles can share packages with other bundles and hide packages from other 

bundles
 Bundle is just a Jar file with some additional metadata(manifest headers) in the 

MANIFEST.MF file.



Bundle

 Sample MANIFEST.MF file of a bundle.

Bundle­ManifestVersion : 2
Bundle­Name : My First OSGi Bundle
Bundle­SymbolicName: HelloWorldBundle
Bundle­Version: 1.0.0
Export­Package:org.helloworld
Import­package:org.osgi.framework

 Bundle-SymbolicName and Bundle-Version is used to uniquely identify a bundle. 
 Bundle-Version header is optional. 



 By default packages in a Bundle are considered as private. Other bundles 
cannot see them.

 If a bundle needs to share packages, it needs to explicitly export 
packages using the manifest header Export-Package.

 The way to use classes/packages in other bundles is to import them 
explicitly using Import-Package manifest header.

Bundles & Java packages



Bundle A

Exported Packages

Private Packages

Imported Packages

Bundle B

Exported Packages

Private Packages

Imported Packages

Bundle C

Exported Packages

Private Packages

Imported Packages

Bundles & Java packages

 How does OSGi achieve this level of information hiding...?

Imports

Imports



Bundles & Class Loaders

 Hierarchical class loading architecture in Java results in a global, flat and 
ordered class path.

 Root cause for most of the issues in Java
 OSGi eliminates these issues by introducing a separate class path for 

bundles. i.e a separate class loaders per bundle
 Bundle class loader can load classes from 

system class loader
other bundle class loaders.(imported packages)
The bundle's jar file.

 This delegation forms a class loader delegation network.



Bundles & Class Loaders



 Represents the framework.
 OSGi Core framework implementation classes reside in the system 

bundle.
 Registers system services.
 Exports packages that are loaded from the system classpath.

The System Bundle



Demo



 Mechanism where bundles can be directly wired to other bundles.

Require­Bundle : sample−api

 This header allows a bundle to import all exported packages from another bundle.
 Consider the following set of headers of the bundle sample-impl.

Bundle­SymbolicName: sample­impl
Require­Bundle: sample−api;visibility=reexport

 bundles that require this bundle(sample-impl) will transitively have access to the 
required bundle s(sample-api) exported packages.’

 The use of Require-Bundle is strongly discouraged. why?

Require Bundles



Require Bundles
Issues with Require BundlesIssues with Require Bundles

 Split Packages  Classes from the same package can come from different bundles –
with Require bundle, such a package is called a split package.

 Say bundle A requires bundle B. What if bundle B changes over time?
 Bundle B stops exporting certain packages on which bundle A depends on.
 Bundle B is spited into several bundles.

 Require bundles chain can occur.
 Bundle A requires bundle B.
 Bundle B requires bundle C.
 Bundle C requires bundle D and so on.

 Bundle A may depends on a small portion of bundle B. Yet Bundle A has to bring all 
the bundles in the chain. 

 This can result in us bringing in a large amount of functionality when only a small 
amount is really required.



 Fragments are bundles that are attached to a host bundle by the framework.
 Fragments are treated as part of the host, including any permitted headers.
 All class or resource loading of a fragment is handled through the host s class ’

loader, a fragment must never have its own class loader.
 Fragment-Host manifest header is used to specify the host bundle of the 

fragment bundle
Bundle­SymbolicName: child­bundle
Fragment­Host: parent­bundle

Usage:

1) to provide translation files for different locales

2) to provide some platform specify code.

Fragment Bundles



Runtime Class Loading



 Core specification
     -  specifies the framework and the system services

 Service Compendium
     -  specifies several OSGi services which are relevant for different markets such 
        as vehicle and mobile.

 OSGi Alliance, a non profit organization.
    -  develop OSGi specifications.

 Latest released version of the OSGi platform is 4.1

OSGi Specifications



OSGi Specifications
Evolution and ContentsEvolution and Contents



Java & OSGi



Functionality of the framework is divided up into several layers

Layering



 Provides an API to manage bundles at runtime.
 This API can be used to install, uninstall, update, start, stop bundles.
 Provides a runtime model for bundles.

Life Cycle Layer



Bundle States
A bundle can be in one of the following states:
 INSTALLED  The bundle has been successfully installed.–

 RESOLVED  All Java classes that the bundle needs are available. This state –
indicates that the bundle is either ready to be started or has stopped.

 STARTING  The bundle is being started, the BundleActivator.start method will –
be called, and this method has not yet returned. 

 ACTIVE  The bundle has been successfully activated and is running; its Bundle –
Activator start method has been called and returned.

 STOPPING  The bundle is being stopped. The BundleActivator.stop method has –
been called but the stop method has not yet returned.

 UNINSTALLED  The bundle has been uninstalled. It cannot move into another –
state.



Bundle States



Bundle Activator

 Bundle is activated by calling its Bundle Activator object(if any).
 BundleActivator interface defines methods that the framework invokes when it 

starts and stops the bundle.
 Bundle developer should declare Bundle-Activator manifest header in the 

manifest file, in order to inform the framework. 
 The value of the header should be the fully qualified class name of the class 

which implements the BundleActivator interface
Bundle­Activator: org.sample.Activator

Public interface BundleActivator {
public void start(BundleContext context) throws Exception;
public void stop(BundleContext context) throws Excecption;

}



Bundle Context

 Represents the execution context of a single bundle within the OSGi platform.
 Act as a proxy between to the underlying framework.
 BundleContext object is created by the framework when a bundle is started.
 BundleContext object can be used to,

 Install new bundles
 Obtain registered services by other bundles,
 Register services in the framework.
 Subscribe or unsubscribe to events broadcast by the Framework



Demo



Service Layer



Specifies a mechanism for bundles to collaborate at 
runtime by sharing objects.



OSGi provides a in-VM publish-find-bind model for 
plain old Java objects(POJO).



 Introduces the OSGi service registry.
 A service is Java object published in the framework service registry.
 Bundles can register Java objects(services) with this service registry under one 

or more interfaces.
 A Java interface as the type of the service is strongly recommended.
 All these operations are dynamic.

Service Layer



A bundle publishing a service in the framework registry supplies.
A string or string array, with fully qualified class name(s) that the service 
implements.
Actual Java object (i.e service)
A dictionary with additional service properties 

Registering a Service



public class Activator implements BundleActivator {

public void start(BundleContext bc) {
Hashtable props = new Hashtable();
props.put("language", "en");

//Registering the HelloWorld service
bc.registerService(HelloService.class.getName(), 

new HelloServiceImpl(), props); 
}

public void stop(BundleContext bc) {
}

}

Registering a Service



Using a Service

• Use framework to find a ServiceReference for the actual service. The 
ServiceReference,
 avoid unnecessary dynamic service dependencies between bundles.
 encapsulate the properties and other meta-date about the service object it 

represents.
– Use ServiceReference to get the service object.

3)Cast the service object to appropriate Java type.

4)Use the service.
– If you do not need the service anymore, use ServiceReference to unget the 

service object.



public void start(BundleContext bc) {
//Get the service reference for HelloService
serviceRef = bc.getServiceReference(HelloService.class.getName());

//service reference can be null, if the service is not registered.
if(serviceRef != null) {

helloService = (HelloService)bc.getService(serviceRef); 
} else {

System.err.println("service reference not found.");
}

//service can be null..
if (helloService!=null) {

helloService.sayHello(); 
} else {

System.err.println("No HelloService found!");
}

}

Using a Service



Once the bundle finished utilizing the service, It should release service using the 
following mechanism.

public void stop(BundleContext bc) {
if (helloService!=null) {

bc.ungetService(serviceRef);
helloService = null;
serviceRef = null;

} else {
System.err.println("HelloService is null!");

}
}

Using a Service



Demo



 Framework fires ServiceEvents for following actions related to services.
 Registering a service.
 Unregistering a service.
 Modifying service properties.

 It is highly recommended for bundles which uses services, to listen to 
these events and carefully handle them.

 Why?

Events and Listeners



Stale References



Services are Dynamic



 Stale reference is reference to a Java object that
 belongs to the class loader of a bundle that is stopped 
 is associated with a service object that is unregistered.

 Potential harmful because they may result in significantly increased memory 
usage.

 Removing stale references is a responsibility of the bundle developer.
 Bundles should listen to the service events of obtained services and act 

accordingly.

Stale References



 A service can come and go at any time.
 A bundle developer must not assume the availability of the service at any 

moment.
 Bundle can decide to withdraw its service from the registry while other 

bundles are still using this service.
 A Service may not be registered at the other bundles trying to use it.

 this depends on the start order of bundles.
 it is highly recommended not do depend on the starting order of 

bundles.
 Bundle developer should write code to handle this dynamic behavior of 

services.

Services are Dynamic



 Monitoring services or listening to service events is the only way to handle 
dynamic behavior of services.

 Following mechanisms can be used for this purposes
 Service Listeners
 Service Trackers
 Declarative Service
 iPOJO
 Blueprint services

Monitoring Services



 Introduced in R1  from the beginning of OSGi→

 ServiceListener is a listener interface that may be implemented by a 
bundle developer.

Public interface ServiceListener{
  public void serviceChanged(ServiceEvent event);

}

 When a ServiceEvent is fired, it is synchronously delivered to a 
ServiceListener.

Service Listener



public class HelloServiceListener implements ServiceListener{

public void start(BundleContext context) throws Exception {
context.addServiceListener(this);

}

public void stop(BundleContext context) throws Exception {
context.removeServiceListener(this);

}

public void serviceChanged(ServiceEvent event) {
switch(event.getType()){

case ServiceEvent.UNREGISTERING:
break;
case ServiceEvent.REGISTERED:
break;
case ServiceEvent.MODIFIED:
break;

}
}

}

Service Listener



Demo



If the service is registered before adding the 
listener, listener will not get the REGISTERED 

event.

Now what?



public class HelloServiceListener implements ServiceListener{

public void start(BundleContext context) throws Exception {
ref = context.getServiceReference(HelloService.class.getName());
if(ref != null){

helloService = (HelloService)context.getService(ref);
}  

context.addServiceListener(this);
}

}

First try to get the service, then register the listener.
We still have a problem here..
Race conditions.

Service Listener



 Introduced in R2 specification.
 Defines a utility class, ServiceTracker which significantly reduces the 

complexities of service listeners.
 ServiceTracker can be customized by implementing the interface 

ServiceTrackerCustomizer or by sub-classing the ServiceTracker class.
 Ideal solution for tracking one service.
 A better solution to remove the start level dependency.

Service Tracker



public class Activator implements BundleActivator {
public void start(BundleContext bc) {

  tracker = new ServiceTracker(bundleContext,
HelloService.class.getName(), null );

tracker.open();

HelloService service = (HelloService) tracker.getService();
if (service!=null) {

service.sayHello(“Service Tracker”);
service = null;

}
}

public void stop(BundleContext bc) {
tracker.close()

}
}

Service Tracker



Demo



 Service listeners
 race conditions
 listener leaks.

 Service Trackers 
 must be closed otherwise listener leaks occur.
 Writing a customizer to handle more than one service is 

complicated.
 Working with the OSGi service model using the programmatic API can 

be complex and error prone. 
 Bundle developers tend to make optimistic assumptions regarding the 

availability of services in an attempt to simplify their code. 

Services are Dynamic



Declarative Services



 Introduced in R4.
 Alternative approach for using OSGi services programming API.
 Is a way for a bundle to declare, in an XML file, the services it registers 

and acquires. 
 Provides a simplified programming model for developers. They need to 

write less code.
 Runtime portion of the declarative service is called Service Component 

Runtime(SCR).
 Allows developers to keep OSGi code away from domain logic.

Declarative Services



 A service component contains a description that is interpreted at run time 
to create and dispose objects depending on the

 availability of other services
 need for such an object
 available configuration data.

 Can optionally provide as OSGi service.
 DS specification uses the generic term component to refer to a service 

component 
 Component is a normal Java class(POJO) and it is declared in an XML 

document.

Services Component



Component Description  The declaration of a service component. It is contained –
within an XML document in a bundle.

Component Properties  A set of properties which can be specified by the –
component description, Configuration Admin service and from the component 
factory.

Component Configuration  A component configuration represents a component –
description parameterized by component properties. It is the entity that tracks the 
component dependencies and manages a component instance. An activated 
component configuration has a component context.

Component Instance  An instance of the component implementation class. A –
component instance is created when a component configuration is activated and 
discarded when the component configuration is deactivated. A component instance 
is associated with exactly one component configuration.

Concepts



A component requires the following artifacts in the bundle:

1)  An XML document that contains the component description.
/OSGI­INF/example.xml

2)  The Service-Component manifest header which names the XML 
      documents that contain the component descriptions.

Service­Component: OSGI­INF/example.xml

3)  An implementation class that is specified in the component description.

Declaring a Service



Description of a component which reference a service.

<?xml version="1.0" encoding="UTF­8"?>

<component name="helloservice.listen">

<implementation class="org.sample.HelloComponent”/>

<reference name="HS"

interface="org.helloworld.HelloService"

bind="setHelloService"

unbind="unsetHelloService” />

</component>

Example 1



Component implementation class.

public class HelloComponent {

HelloService hs;

protected void setHelloService(HelloService s) { hs = s; }

protected void setHelloService(HelloService s) { hs = null; }

protected void activate(ComponentContext ctxt) {...}

protected void deactivate(ComponentContext ctxt) {...}

}

Example 1



Description of a component which publish a service.

<?xml version="1.0" encoding="UTF­8"?>

<component name="example.handler">

<implementation class="org.helloworld.HelloServiceImpl"/>

<service>

<provide interface="org.helloworld.HelloService"/>

</service>

<component>

Example 2



Demo



 The actor/implementation that manages the components and their life 
cycle.

 Listens for bundles that become active(Active state) and detects 
Component Descriptions

 The SCR is responsible for activating and deactivating Component 
Configurations

SCR
Service Component RuntimeService Component Runtime



Component Life Cycle
EnabledEnabled

 Life cycle of a component contained within the life cycle of its bundle.
 Initial enabled state of a component is specified in the component 

description, using the enabled attribute.
 A component is enabled if the bundle is started and the enabled attribute 

is set to true. The default value is true . “ ”

 A component should become enabled before it can be used.



Component Life Cycle
SatisfiedSatisfied

 A component can become satisfied, if the following conditions are met
 The component is enabled.
 Using the component properties of the component configuration, all the 

component s references are satisfied. A reference is satisfied when the ’
reference specifies optional cardinality or there is at least one target 
service for the reference.



 SCR must activate a component configuration when the component 
is enabled and the component configuration is satisfied and a 
component configuration is needed. During the life time of a 
component configuration, SCR can notify the component of changes 
in its bound references.

 SCR will deactivate a previously activated component configuration 
when the component becomes disabled, the component 
configuration becomes unsatisfied, or the component configuration is 
no longer needed.

Activation and Deactivation



 Delayed Component
 A component whose component configurations are activated when 

their service is requested.
 Immediate Component

 A component whose component configurations are activated 
immediately upon becoming satisfied.

 Factory Component
 A component whose component configurations are created and 

activated through the component s component factory.ʼ

Types of Components



 A component is an immediate component if it is not a factory component 
and either does not specify a service or specifies a service and the 
immediate attribute of the component element set to true.

 An immediate component is activated as soon as its dependencies are 
satisfied.

 If an immediate component has no dependencies, it is activated 
immediately.

Immediate Component



Component description

<?xml version="1.0" encoding="UTF­8"?>
<component name="example.activator">

<implementation class="org.sample.HelloComponent"/>
</component>

Component implementation class

public class HelloComponent {
protected void activate(ComponentContext ctxt) {...}
protected void deactivate(ComponentContext ctxt) {...}

}

Immediate Component



 A delayed component
 specifies a service
 is not specified to be a factory component
 does not have the immediate attribute of the component element 

set to true.
 If a delayed component configuration is satisfied, SCR must register the 

component configuration as a service in the service registry but the 
activation of the component configuration is delayed until the registered 
service is requested.

 This is achieved by using a ServiceFactory

Delayed Component



Component description

<?xml version="1.0" encoding="UTF­8"?>

<component name="example.handler">

<implementation class="org.helloworld.HelloServiceImpl"/>

<service>

<provide interface="org.helloworld.HelloService"/>

</service>

<component>

Component implementation class

public class HelloServiceImpl implements HelloService {
public void sayHello() {...}

}

Delayed Component



Component description.
<?xml version="1.0" encoding="UTF­8"?>
<component name="helloservice.listen">

<implementation class="org.sample.HelloComponent”/>
<reference name="HS"

interface="org.helloworld.HelloService"
bind="setHelloService"
unbind="unsetHelloService” />

</component>

Component implementation class.
public class HelloComponent {

HelloService hs;
protected void setHelloService(HelloService s) { hs = s; }
protected void setHelloService(HelloService s) { hs = null; }
protected void activate(ComponentContext ctxt) {...}
protected void deactivate(ComponentContext ctxt) {...}

}

Accessing Services
Event StrategyEvent Strategy



Component description.
<?xml version="1.0" encoding="UTF­8"?>
<component name="helloservice.listen">

<implementation class="org.sample.HelloComponent”/>
<reference name="HS"

interface="org.helloworld.HelloService"/>
</component>

Component implementation class.
public class HelloComponent {

HelloService hs;
protected void activate(ComponentContext ctxt) {

hs = (HelloService) cxtx.locateService(“HS”);
}
protected void deactivate(ComponentContext ctxt) {...}

}

Accessing Services
Lookup StrategyLookup Strategy



 cardinality for a referenced service
 0..1  optional and unary,–
 1..1  mandatory and unary (Default) ,–
 0..n  optional and multiple,–
 1..n  mandatory and multiple.–

 Reference policy
 static 
 dynamic

 selecting target services
 By specifying a filter in the target property,  the set of services 

that should be part of the target services can be constrained

References to Services



<?xml version="1.0" encoding="UTF­8"?>
<component name="helloservice.listen">

<implementation class="org.sample.HelloComponent"/>
<reference name="HS"

interface="org.sample.HelloService"
cardinality="0..n"
policy="dynamic"
target="(language=en)"
bind="setHelloService"
unbind="setHelloService" />

</component>

References to Services



Demo



Questions ??



Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

